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ABSTRACT

Internet routers and firewalls can be enhanced by packet-
processing functions implemented in reconfigurable hard-
ware. Through the development of the the Field Program-
ma-ble Port Extender (FPX), a platform has been built that
demonstrate how networking modules can be used for rapid
prototype and deployment new features in such hardware.
The platform includes high-speed network interfaces, mul-
tiple banks of memory, and Field Programmable Gate Ar-
ray (FPGA) logic. The platform allows reprogrammable
hardware modules to be dynamically installed into a router
or firewall through the use of full or partial reprogram-
ming of an FPGA. Applications have been developed for
the FPX that include Internet packet routing, data queuing,
and application-level content modification. These applica-
tions have sufficient performance to process packets at the
full rate of an Internet backbone.

1. INTRODUCTION

The demands of the Internet have affected the requirements
of networking routers and firewalls in two major ways. Much
higher performance so that they can keep pace with the the
growing demands for bandwidth. At the same time, these
systems need the flexibility to implement new features and
functionality.

1.1 The Need for Bandwidth

Bandwidth on the Internet has greatly increased. With the
wide-scale deployment of fiber to business and Asymmetric
Digital Subscriber Lines (ADSL) and cable modems to the
home; broadband services are now widely available. The
combined effect of higher bandwidth to each user, along with

∗This research is supported by NSF: ANI-0096052 and Xil-
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larger base of installed users, doubles the bandwidth of the
Internet nearly every 100 days.

1.2 Advanced Packet Processing

In order to be competitive, Internet Service Providers (ISPs)
must provide their customers with more advanced services
than the best-effort packet delivery. Quality of Service (QoS)-
enabled routing is needed to support real-time services, such
as audio and video conferencing. Firewall services and com-
plex port filtering mechanisms are needed to protect net-
works from hackers that launch denial of service attacks.

1.3 Software vs Hardware

Software-based based routers and firewalls excel in their
ability to implement new reprogrammable features. These
features can be added or removed in the router by upgrad-
ing the code in the system. The sequential nature of the
microprocessor that executes that code, however, can limit
the throughput of the system. Application-Specific Inte-
grated Circuits (ASICs) are typically used in routers to im-
plement these performance-critical features. The static na-
ture of an ASIC circuit, however, limits the functionality of
the performance-critical features to a fixed set of features.

1.4 Field Programmable Gate Arrays

Field Programmable Gate Arrays can be used to simulta-
neously address both of these issues. Routers and firewalls
that utilize FPGAs can implement a desirable balance be-
tween performance and flexibility [1]. They share the per-
formance advantage of ASICs in that customized pipelines
can be implemented and that parallel logic functions can be
performed over the area of the device

1



Card
OC3/
OC12/
OC48

Line FPX
Extender

Port
programmable

Field− Card
OC3/

OC12/
OC48

Line

In
te

rn
et

Us
er

s

Figure 1: FPX in Standalone Configuration, for use as an
Internet firewall or packet filter

1.5 Project Background

Field Programmable Gate Arrays have proven to be an ef-
fective technology for implementation of networking hard-
ware. In the development of the iPOINT testbed, a com-
plete Asynchronous Transfer Mode (ATM) switch was built
using FPGAs [2]. This system utilized a Xilinx 4013 FPGA
to implement a single-stage switch [3] and multiple Xilinx
4005 FPGAs to implement queuing modules at each of the
inputs of the switch [4]. The Illinois Input Queue (iiQueue)
was implemented to enhance the performance of distributed
input queuing by sorted packets according to their flow, des-
tination, and priority. A prototype of this system was im-
plemented using Xilinx XC4013 FPGAs [5].

The benefit of using reprogrammable logic in the iiQueue
was that complex algorithms for queuing data could be tuned
by simply reprogramming the FPGA logic. Further, the
reprogrammable logic enabled additional packet processing
features to be integrated into the same FPGA devices that
controlled the queuing circuits.

FPGAs have also proven to be effective for implementation
of “bit-intensive” functions networking, such as Forward Er-
ror Correction (FEC). FPGAs have also been used as mod-
ules in systems, where a software controller is used to load
and unload functionality [6].

The use of modules is a common theme in the research area
of active networking. An interesting extension to that body
of work relates to the integration of the reprogrammable
functions in both software and hardware [7].

2. THE FPX PLATFORM

Through a University research program, a platform called
the Field Programmable Port Extender (FPX) has been de-
veloped. The FPX enables the rapid prototype and deploy-
ment of packet processing modules in reprogrammable hard-
ware. The development of this system has provided insight
into several design aspects of reprogrammable networking
systems, which are discussed in this paper.

3. DATA FORMAT

Data can be transported over a network in a variety of for-
mats. The FPX process data formatted in cells or packets.
Cells that are processed by the FPX are assumed to be in the
format of Asynchrounous Transfer Mode. Internet packets
are assumed to be in the format of an encapsulated frame
carried over a Adaptation Layer Five [8].

3.1 Network Topology
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Figure 2: FPX between Line Card and switch backplane,
for use in a router
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Figure 3: NID and RAD Configuration

The FPX can be used by itself or in conjunction with a
network switch. In either case, the FPX resides between
standard network interfaces found on a line card or switch.
Utopia-like interfaces are used to transmit data to and from
the interfaces of the FPX.

In the standalone configuration, the FPX interfaces to the
ports of optical line card as shown in Figure 1. This con-
figuration is typical of an Internet firewall, where one port
is routed to the Internet (or Internet Service Provider), and
the other leads to a user (or customer network).

In a router configuration, FPX modules reside between a
switch fabric and each of the line cards. Currently, the FPX
is used as a component in the Washington University Giga-
bit Switch (WUGS) [9]. Physically, the module is inserted
between an optical line card and the WUGS gigabit switch
backplane. The aggregate throughput of the system scales
with the number of switch ports.

3.2 Logical Configuration

The FPX implements all logic using two FPGA devices: the
Network Interface Device (NID) and the Reprogrammable
Application Device (RAD). The interconnection of the RAD
and NID to the network and memory components is shown
in Figure 3.
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The RAD contains the modules that implement customized
packet processing functions. Each module on the RAD con-
nects to one Static RAM (SRAM) and to one, wide Syn-
chronous Dynamic RAM (SDRAM). In total, the modules
implemented on the RAD have full control over four inde-
pendent banks of memory. The SRAM is typically used for
applications that need to implement table lookup operations
(like the Fast IP lookup algorithm), while the SDRAM in-
terface is intended for applications like packet queuing that
need only transfer bursts of data and can tolerate a higher
memory latency.

The RAD communicates with the NID using the same Utopia-
like interface as the NID to the network interfaces. Packets
on this interface are segmented into a sequence of fixed-size
cells that are formatted as IP over ATM. Each interface has
a small amount of buffering and implements flow control. A
Start of Cell (SOC) signal is asserted to indicate the arrival
of data, and the Transmit Cell Available (TCA) signal is as-
serted back towards the data source to indicate downstream
congestion.

3.3 Network Interface Device

The Network Interface Device (NID) on the FPX controls
how packet flows are routed to and from modules. It also
provides mechanisms to dynamically load hardware modules
over the network and into the router. The combination of
these features allows these modules to be dynamically loaded
without affecting the switching of other traffic flows or the
processing of packets by the other modules in the system.

As shown in Figure 4, The NID has several components, all
of which are implemented in FPGA hardware. It contains a
four-port switch to transfer data between ports; Virtual Cir-
cuit lookup tables (VC) on each port in order to selectively
route flows; a Control Cell Processor (CP), which is used to
process control cells that are transmitted and received over
the network; logic to reprogram the FPGA hardware on the
RAD; and synchronous and asynchronous interfaces to the
four network ports that surround the NID.

3.3.1 Per Flow Routing

The NID routes flows among the two modules on the RAD,
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Figure 5: Per-flow routing on the NID

the network interface to the switch, and the network inter-
face to the line card using a four-port switch. Each traffic
flow that arrives on any incoming port can be forwarded to
any destination port.

Each of the NID’s four interfaces provide a small amount
of buffering for short-term congestion. Buffers on the NID
are implemented using on-chip memory. When packets con-
tend for transmission to the same destination port, the NID
performs arbitration. For long term congestion, the NID
avoids data loss by sending a back-pressure signals to source
causing congestion in the outgoing flow. The design of the
four-port switch and scheduling algorithm used to arbitrate
among flows is based on the design of the iPOINT switch
[2] [3].

The NID supports forwarding for both aggregate traffic flows
and individual traffic flows. IP Packets are routed through
the FPX and switch based on assignment of cell headers that
transport that packet. The NID’s Virtual Circuit lookup
table (VC) maps these flows into next-hop destinations at
each of the four ports. As shown in Figure 5, the NID’s flow
routing table contains entries for each of the four ports in the
switch that identify the destination port (d1 . . . d4) of each
flow. The table has sufficient entries to support more than
a thousand flows for aggregate traffic and another thousand
entries for individual flows.

Examples that illustrate the NID’s switching functionality
are shown in Figure 6. By default, cells are simply passed
between the line card interface and the switch. To imple-
ment egress flow processing (i.e., process packets as they
exit the router), the NID routes a flow from the switch,
to a RAD module, then out to the line card. Likewise, to
implement ingress cell processing, the NID routes a virtual
circuit from the line card, to a RAD module, then out to the
switch. Full RAD processing occurs when data is processed
in both directions by both modules on the RAD. Loopback
and partial loopback testing can be programmed on the NID
to debug experimental modules. Modules can implement
selective packet forwarding by reassignment of the headers
that transport each packet.

3.3.2 Control functions

The NID implements a Control Cell Processor (CCP) in
hardware to manage the operation of the FPX and commu-
nicate over the network. On the ingress interface from the
switch, the CCP listens to responds to commands that are
sent on a specific virtual circuit. The NID processes com-
mands that include: (1) modification of per-flow routing
entries; (2) reading and writing of hardware status regis-
ters, (3) reading and writing of configuration memory, and
(4) commands that cause the logic on the RAD to be repro-
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Figure 7: Modular Component of FPX

grammed. After executing each command, the NID returns
a response in a control cell.

3.4 Reprogrammability

In order to reprogram the RAD over the network, the NID
implements a reliable protocol to fill the contents of the on-
board RAM with configuration data that is sent over the
network. As each cell arrives, the NID uses the data and
the sequence number in the cell to write data into the RAD
Program SRAM. Once the last cell has been correctly re-
ceived, and the FPX holds an image of the reconfiguration
bytestream that is needed to reprogram the RAD. At that
time, another control cell can be sent to NID to initiate
the reprogramming of RAD using the contents of the RAD
Program SRAM.

The FPX supports partial reprogramming the RAD by al-
lowing configuration streams to contain commands that only
program a portion of the logic on the RAD. Rather than is-
sue a command to reinitialize the device, the NID just writes
the frames of reconfiguration data to the RAD’s reprogram-
ming port. This feature enables the other module on the
RAD to continue processing packets during the partial re-
configuration. Similar techniques have been implemented in
other systems using software-based controllers [10] [11].

3.5 Modular Architecture

Application-specific functionality is implemented on the RAD
as modules. A modular interface has been developed that
provides a standard interface to access packet content and
to interface with off-chip memory.

Hardware plugin modules on the RAD consist of a region
of FPGA gates and internal memory, bounded by a well-
defined interface to the network and external memory. Cur-
rently, those regions are defined as one half of an FPGA and
a fixed set of I/O pins.

3.5.1 Single Module

The modular interface of an FPX component is shown in
Figure 7. Data arrives at and departs from a module over
a 32-bit wide, Utopia-like interface. Data passes through
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Figure 8: Combined Modules

modules as complete ATM cells. Larger IP datagrams pass
through the interface in multiple cells.

The module provides two interfaces to off-chip memory. The
SRAM interface supports transfer of 36-bit wide data to
and from off-chip SRAM. The Synchronous Dynamic RAM
(SDRAM) interface provides a 64-bit wide interface to off-
chip memory. In the implementation of the IP lookup mod-
ule, the off-chip SRAM is used to store the data structures
of the fast IP Lookup algorithm [12].

3.5.2 Combined Modules

As the capacity of FPGAs increases, a larger number of
modules can be integrated on the same FPGA. The modular
interface on the FPX has been designed so that circuits can
retain their same interface, regardless of how many mod-
ules are combined into the FPGA. A configuration of an
FPX module with three modules mapped into one-half of
the RAD is shown in Figure 8.

4. IMPLEMENTATION OF THE FPX

The FPX platform was implemented on the 20 cm × 10.5
cm printed circuit board shown in Figure 9. The FPX in-
clude two FPGAs, five banks of memory, and two high-speed
network interfaces.

4.1 FPGA Capacity

The FPGAs where chosen so that the system would have
sufficient gate capacity to implement meaningful network-
ing applications. The RAD is implemented with a Xilinx
Virtex 1000E-fg680 FPGA, while the NID is implemented
with a Virtex 600E-fg676 FPGA. The NID FPGA contains
sufficient logic to interface to the switch and line card, while
the larger RAD FPGA was chosen to provide sufficient logic
density in order to implement complex IP routing and queu-
ing functions.
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Figure 12: FPX Module

4.2 FPX Memory Configuration

The FPX contains five independent banks of memory. The
NID includes a single bank of SRAM, which is used to store
configuration data for the RAD. The RAD interfaces to dual
banks of SRAM and SDRAM memory.

Two banks of 36-bit wide SRAM were determined sufficient
to maintain pointers and data structures needed for Internet
packet lookups and management of per-flow queuing data
structures. The SRAM on the FPX utilizes Zero Bus Turn-
around (ZBT) SRAMs to provide full-throughput.

Two banks of 64-bit wide Synchronous Dynamic Random
Access Memory (SDRAM) provide sufficient bandwidth to
buffer data to and from the network. At Gigabit/second
rates, several Megabytes of memory are required to buffer
bursts of data. SDRAM is well suited to meet these require-
ments.

The total number of memory operations that can be used
to process a packet depend on the Line Card rate and the
length of the packet. The faster the link, the fewer the
number of cycles: Fifty-six bytes is the smallest packet that
would be processed by the WUGS switch/router. This size
is slightly larger than the 53-byte size of an Asynchrounous
Transfer Mode (ATM) cell.

For memories that operate at 100 MHz and for line cards
that operate at OC3 rates (155 Mbits/second), each memory
provides 53 ∗ 8/155M = 273 operations per cell. The four
parallel banks of memory can, therefore, perform a total of
273∗4 = 1092 memory operations within the time period of
a cell slot. At OC12 (622 Mbits/second), the same hardware
can implement 273 operations. At OC48 (2.4 Gbits/second),
the FPX provides 68 memory operations per slot period. Of
these operations, 56/8 = 7 writes to the SDRAM memory
are used to enqueue a cell, and 56/8 = 7 reads from the

SDRAM are used to dequeue a cell. All remaining memory
operations can be used to implement the routing and buffer
management functions.

4.3 Networking Interfaces

Networking interfaces on the FPX were optimized to en-
able the simultaneous arrival and departure of data cells at
SONET OC48 rates. This is the equivalent bandwidth of
multiple channels of Gigabit Ethernet.

Physically, the networking interfaces on the FPX were im-
plemented in a way that allows the card to be stacked be-
tween the line card and backplane of a switch fabric. Fig-
ure 10 shows the original configuration of the backplane
switch and a line card, while Figure 11 shows the same with
the addition of the addition of a FPX module.

4.4 Complete System

A photograph of the FPX module is shown in Figure 12.
SRAM components on the FPX are mounted above and be-
low the RAD. SDRAM memories are mounted on the back
of the FPX in sockets. Reconfiguration data for the FPGAs
are stored both in non-volatile Flash memory for the NID
and SRAM memory for the RAD.

Figure 13 shows an FPX mounted in one port of the Wash-
ington University Gigabit Switch (WUGS) [9]. By inserting
FPX modules at each port of the switch, parallel FPX units
can be used to simultaneously process packets on all ports
of the network switch.

5. APPLICATIONS

Hardware components on the FPX are built as generic mod-
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Figure 13: Photo of FPX mounted in WUGS Switch
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ules on the FPX. The Reprogrammable Application Device
is used to implement the user-defined logic. Thus far, Mod-
ules have been developed for the FPX that implement IP
packet routing [12], packet buffering, and application-level
packet content modification. Additional hardware modules
can be easily implemented on the FPX. The architecture
of the FPX makes it well suited to implement applications
like per-flow queuing [5], and flow control algorithms [13] in
hardware.

5.1 String Matching Operations

An application called “Hello, World” illustrates how an an
FPX module can be implemented to perform application-
level content modification. “Hello” searches an ATM cell
on particular virtual circuit for a payload starting with the
string “HELLO”. If and only if a match was found, the cir-
cuit concatenates the content of the cell with the string
“WORLD.” A diagram of the formatted cell is shown in
Figure 14.

There are several cases in which the cell may not match.
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Figure 15: Cell processing for mismatched payload

First, cells should only be processed if they arrive on the
correct virtual circuit. In this example, the module is pro-
grammed to process cells on VCI=5. If the VCI doesn’t
match, the cell should passes through without modification.

Second, for those cells that do arrive on the correct VCI,
the string must match over all words in the payload. For
the string shown in Figure 15, a mismatch is found in the
the first byte of the first word. Since the ”MELLO” doesn’t
match ”HELLO”, the contents of the cell are left unchanged.

Performing a string match on the FPX is slightly compli-
cated by the fact that the payload arrives as a stream of
words; not all at once. Since an FPX module receives only
one word per clock cycle, the circuit must know the status
of previous comparisons to ensure that all current and pre-
vious words matched before it writes the word ”WORLD.”
in the current and future clock cycles.

5.1.1 Logical Implementation

There are several ways to implement the “Hello World” cir-
cuit on the FPX. One such implementation uses a counter
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Figure 17: Post-synthesis signal timing relationships
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Figure 16: State machine for the Hello World circuit

and the state machine shown in Figure 16. The module be-
gins in the reset state. When a new cell arrives, it compares
the value of the VCI. If the VCI doesn’t match, it jumps
to the ‘Dout’ state. In the ‘Dout’ state, all of the remain-
ing data in the cell is written out of the module with the
same value it had when it arrived. If the VCI does match,
the circuit next scans the first word of the payload for the
first four letters of the letters of the string. For cells that
do match, the state machine jumps to the ’World’ state. It
stays in this state for multiple clock cycles as the content of
packet is modified to contain the ”WORLD” string.

5.1.2 Module Operation

The post-synthesis timing relationships among the signals
in the ”Hello World” are shown in Figure 17. Data arrives
as cells on the 32-bit data bus on switch-side of the RAD
logic. The arrival of a new cell on the bus is indicated by
the StartOfCell (SOC) signal. The ’Start of Cell (SOC)’
and data, are buffered both internally and across the edge
flops of the FPGA. The operation of the circuit can be seen
by observing how the buffered output data (bdata out) is

modified from the buffered data input (bdata in). Observe
that the hardware module changed the content of the cell
from “HELLOELLO...” to “HELLO WORLD”.

5.1.3 Results of Physical Implementation

The circuit to implement the ”Hello World” module was
synthesized for he RAD FPGA (a Xilinx V1000E-FG680-7
device) using Exemplar and Xilinx back-end synthesis tools.
The resulting circuit operates at: 119 MHz. The 8.4ns criti-
cal path in this circuit is well within the 10ns period provided
by the RAD’s clock. Since the circuit can handle back-to-
back cells; this circuit achieves the maximum packet process-
ing rate of (100 MHz)/(14 Clocks/Cell)=7.1 Million packets
per second.

The utilization of the FPGA to implement this circuit was
49 out of 12,288 slices on the FPGA. Thus, all of the logic
to perform the search and replacement operation for this
module was implemented in less than one-half of one percent
of the chip resources.

A full report on the implementation of the Hello World mod-
ule is available on-line [14]. The full VHDL source code and
I/O pin mappings on the RAD can be downloaded from the
project website [15].
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6. CONCLUSIONS

Field Programmable Gate Arrays can have an important
role in network routers and firewalls. Through the devel-
opment of the FPX, a platform has been built that enables
features to be implemented in a router or firewall as generic,
reprogrammable hardware modules.

The use of the modular interface to implement the functional
components has several benefits. First, it provides hardware
developers a well-defined interface for receiving and trans-
mitting data between the network interfaces and off-chip
memories. Second, it allows multiple modules to be eas-
ily integrated together. Lastly, due to the reprogrammable
nature of the FPGA, it allows all functions of the router
or firewall to dynamically upgraded. The FPX allows this
function to happen over a network.

Core functionality on the FPX is implemented on the the
Networking Interface Device. It forwards traffic between
modules; it reliably transports byte-streams over a network;
and it implements the logic to dynamically reconfigure an
FPGA device.

Several networking modules have been developed for the
FPX, including IP routing, data queuing, and application-
level packet modification. These applications demonstrated
that such a system can efficiently implement performance-
critical networking functions.
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